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SUMMARY 

The flow field studied in this paper is the viscous laminar, separated flow downstream of a sudden expansion 
in a two-dimensional duct. The flow is modelled by the Oseen equations and a solution is sought for the 
downstream flow given the conditions at the sudden expansion. First, the exact solution to a high-Reynolds- 
number limit equation suggested by Kumar and Yajnik [6 ] is obtained. Next, the solution to the full equations 
is sought in terms of an eigenfunction-expansion procedure which leads to a non-standard eigenvalue problem. 
A detailed study is made of the latter and a number of expansion procedures are considered for the boundary- 
value problem. Specific calculations of the separated flow are presented for Reynolds numbers R = 10 n, n = 
0-5. It is found that as R --, ** the solution of the full equation does indeed agree with the solution of the 
high-Reynolds-number limit equation. In particular it is found that the length of the recirculating region x r 
scales with R as R -* ~. 

1. Introduction 

The Oseen equations have traditionally been used as approximate equations for low-Reynolds- 

number flows past bodies. They are also known to be a valid approximation to the Navier-Stokes 

equations for high-Reynolds-number flows at large distances from finite bodies [1].  On the 
other hand, one can look at the linear Oseen equations as model equations to study the gross 

features of  viscous flows at all Reynolds numbers. From this point o f  view, the aim is not to get 

accurate solutions for real viscous flows; rather it is to get the qualitative features of  such flows 

and to gain experience on the problems associated with the full Navier-Stokes equations. This 

approach is especially useful when studying certain difficult flow problems. We use this approach 

here to study internal separated flows. 

The idea of  using the Oseen equations as model equations for high Reynolds numbers goes 

back to Oseen himself [2] ,  who obtained general results concerning external separated flows 

past finite bodies. Since then there have been a number of  papers concerned with external 

separated flows past finite two-dimensional bodies as modelled by the Oseen equations; one can 

refer to Kusukawa [3] and Miyagi [4] and to the references quoted therein for the more recent 

work on the subject. However, there appear to be few applications, if any, of  the model 

equations to internal separated flows. As internal separated flows are laterally bounded, they 
are in some ways conceptually simpler than external flows. It would, therefore, seem profitable 

to study such flows using the model equations, since the analysis should be simpler. As will be 
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shown this is indeed so, but the mathematical problems are still non-trivial as they lead to a 
non-standard eigenvalue problem. 
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The specific geometry considered is that of a sudden expansion in an infinite two-dimen- 
sional, straight duct (Figure 1). It is assumed that the flow (e.g. the fluid-velocity field) is 
known at the sudden expansion with the calculation of the downstream separated flow as the 
objective. The flow is assumed steady, laminar and two-dimensional. The corresponding problem 

for the Navier-Stokes equations has been considered, among others, by Hung and Macagno [5], 
who use a numerical finite-difference method and are limited in Reynolds number, and by 

Kumar and Yajnik [6], who derive and use a boundary-layer-like limit equation for high 
Reynolds numbers. The present work, we believe, by virtue of its analytical simplicity, sheds 

light on these studies. 
The main results of this paper are: (i) The nature of the separated flow at a sudden expansion 

is elucidated through the use of the model equations. In particular it is shown that the length of 

the recirculating region increases linearly with Reynolds number as this parameter tends to in- / 

finity. (ii) By solving exactly a high-Reynolds-number limit equation the nature of the solution 
considered by Kumar and Yajnik [6] is clarified. Moreover, in the present case the solution of 
the full equations is shown to agree, in the limit R -+ oo with the solution of the limit equation. 

This lends support to the use of such limit equations for internal separated flows at high 

Reynolds numbers. (iii) A non-standard eigenvalue problem is studied in some detail. Apart 
from the physical interest of the separated flow solutions, the eigenvalue problem merits interest 
on its own. 

2. Formulation 

We consider the flow of a viscous fluid at a sudden expansion in a two-dimensional straight duct 
assuming the flow to be incompressible, steady and two-dimensional. The velocity field far 
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downstream will naturally correspond to PoiseuiUe flow in the duct. Let all lengths be normal- 

ised by the duct half-width a, velocities by the mean velocity U of the Poiseuille flow and 
pressure by p U 2 , where P is the density of  the fluid. Then the model equations to be used take 

the form 

u x + v y  = 0, (1.1) 

Ux = - - P x  + R  -1 V2u, (1.2) 

Vx = - - P v  + R - 1  V2v, (1.3) 

where R = a U / v  is the Reynolds number. 

As for conditions at the duct expansion, one could consider a number of alternate conditions. 

Here we choose to prescribe the initial velocity profile 

u (0 ,y )  = Uo (y) (2.1) 
o n - -  1 ~<y~< 1 

v(0,y)  = Vo (y) (2.2) 

The other boundary conditions are the no-slip condition at the duct wails and the x-independent 
velocity-field requirement far downstream 

u(x ,  +- 1) = v(x,-+ 1) = 0; (3.1) 

u x -+ 0 ,  v ~ 0 as  x ~ oo ( 3 . 2 )  

Since the fluid is incompressible, one can use a stream function • which satisfies the equation 

(4) 

This is the basic governing equation used. At the risk of repetition it might be worthwhile to 

clarify once again the nature of  the approximation used and the point of view taken here. It  is 

clear that since all the non-linear terms of the Navier-Stokes equation have been dropped or re- 

placed by linear ones, the model equations may well miss certain features contained in the 

solutions of the N-S equation. Further, the use of the mean velocity as the constant in the x- 

convection term, though reasonable, might be questioned; one could consider replacing the 

terms Ux and vx in (1.2) and (1.3) by c u x  and c v x  and choosing c 'appropriately'. The latter 

could easily be done, but this would not change the essential features of interest. Thus, in a 

sense the choice of the model equations has been based on convenience. On the other hand, it is 

very likely that when R --> 0 the model equations are a good approximation to the N-S equation; 

so too if the ratio of the duct entry to the duct width is close to unity, and the initial velocity 
prof'fle is uniform. In any case, the point of  view taken here is that the model equations are the 
simplest ones to study and are likely to reveal interesting features of the separated flow in the 
duct. 
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3. An approximate solution for high Reynolds numbers 

Although the boundary value problem posed in Section 2 is linear, it turns out, as will be shown 
in Section 4, that it is not easy to solve it explicitly to obtain useful qualitative or quantitative 
results. We shall therefore first consider here an approximation for high Reynolds numbers i.e. 
forR ~o~. 

We follow here the ideas of Kumar and Yajnik who argue that for R ~ oo the relevant length 

scales for the calculation of the downstream flow are of order 1 and R in the transverse y- 
direction and the streamwise x-direction respectively. Thus, in this approximation the relevant 
limit equation derived from the governing equation (4) is 

ay 2 ay--- q , = 0 .  (5) 

The above equation corresponds to equation (3) of Kumar and yajnik. It is to be noted that 
while the approximation is indeed 'boundary-layer'-like in appearance, the governing ideas are 
not quite the same. This can be seen by going back to the equations (I)  for the velocity field. It 

is true that in this approximation (1.3) implies that the pressure is constant across the duct and 
hence the y-component of velocity is now given by the continuity equation (1.1). However, un- 
like the external boundary-layer case, the pressure here is not known a priori nor is there the 

equivalent of a free-stream boundary condition; rather the lateral boundary conditions are at 
the duct walls alone. 

As for the boundary conditions at x = 0, it is clear that since the highest x-derivatives have 
been lost, it will not be possible to satisfy both the conditions (2.1) and (2.2). This is not sur- 
prising as the arguments leading to the limit equation are not valid for small x, where a dif- 
ferent limit equation is appropriate. Kumar and Yajnik assume without proof the very plausible 
matching condition 

lim q~ (x ,y)  = ~'0 (Y). (6) 
X ~O 

This amounts to enforcing condition (2.1) alone on the streamwise component. It is clear that 

this solution cannot be valid for regions close to the duct enlargement, but presumably the aP- 
proximations are reasonable for x mR. We too shalluse (6) and show that the resulting solutions 
agree well with the exact solutions for large R. 

The boundary-value problem constituted by (5) subject to the boundary conditions (6) and 
(3) can be easily solved either by using the Laplace transform or by using a duct-mode-expansion 
procedure. While we have used both as checks on one another, we present only the latter pro- 
cedure as this method is then used in Section 4 for the full problem. It is easy to verify that the 
simply separable solutions of (5), which decay for x ~ o% are of the type f ( y )  exp (-- kx), 
(Re ~, > 0); assuming such modes, one finds that the full stream function q~(x, y) is given by 

• (x,y)  = ~ y _ ~ y a  + ~(x,y),  (7) 
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where 

~(x,y) = ~ a.e- -n-- {y sin (~.Y) t + bn e- 
n=l sin ~n J 

FI2,/T2X 

COS nff  ] 

1 ~{,~(O,y)_a2y+½y3}sin(~ny)dy ' 
a,, - sin ~,~ 1 

j l{ } 
b n = -- cos nzr _i xP(O,y)--~y+½y3 cosnzrydy. 

(8.2) 

(8.3) 

In the above solution the eigenvalues ~,~ corresponding to the odd eigenfunctions are solutions 
of the equation 

tan ~ = ~ (9) 

which has only real roots. In this high-Reynolds-number approximation, therefore, the duct 
modes are all real and as (8.1) shows the final solution exhibits the relevant axial length as x/R 
showing the analysis to be consistent. The formulae for an and b ,  are discussed in Section 4.2. 

We observe that if the duct expansion and the inlet flow are symmetric the coefficients b n in 
(8.1) vanish, and we need to use only the odd eigenfunctions. The calculations displayed in 

Figures 2 and 3 are for such symmetric flows. Figures 2a and 2b show the streamline patterns 
for a parabolic entry profile for duct expansion ratios of 2 and 10 respectively. These compu- 
tations utilised the first 20 eigenvalues of (9) and were checked using 30 and 40 eigenvalues. It 
was found that 20 eigenvalues were sufficient for a 5 decimal place accuracy in ~o. The stream- 

line patterns computed are qualitatively similar to those obtained by Kumar and Yajnik and 
Hung and Macagno except for the fact that the separating streamline is here concave to the flow. 
However, there appear to be significant differences in the length of the recirculating region (Xr) 
and the maximum ~O-values there (~e)- For example, at an expansion ratio of 2, the present 
model yields a value of .017 for xr/R and kit e not sensibly different from 1.00000 (i.e. the re- 
circulating region appears to be a dead water region); whereas, Kumar and Yajnik and Hung and 
Macagno get values around 0.065 and 1.05 for Xr and q% respectively. It is very likely that the 

large quantitative differences are due to the different models used; no doubt, the Oseen model 
grossly overestimates the axial convection and in the recirculating region even the direction 
might be wrong. On the other hand, it should be pointed out that Hung and Macagno's results 
are for a low Reynolds number (46.6) while Kumar and Yajnik used only 3 terms in their ex- 
pansion procedure and had errors in their inlet velocity profile representation of the order of 
0.1 in u. We shall show in Section 4, from the full solution for this model, that 46 is indeed a 
low Reynolds number for such comparisons. And as for accuracy the present calculations were 
based on 20 terms of the eigenfunction expansion, used double-precision arithmetic and the 
error on the initial-profile representation was of the order of 0.00001. Thus some caution 
must be exercised in quantitatively comparing the present results with those of the earlier 
investigations. 
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Figure 3 shows the variation of  the length of  the recirculating region, xr ,  as a function of  
duct-entry half-width. Figure 4 shows the streamline pattern for a non-symmetric duct ex- 

pansion with parabolic entry profile. It will be shown in the next section that the approximation 

for high Reynolds numbers used here leads to results in agreement with those obtained by the 
use of  the full equations. 

4 .  T h e  s o l u t i o n  o f  th e  fu l l  e q u a t i o n s  

We now consider the solution of  the full boundary-value problem, valid for all R posed by 

equation (4) subject to the boundary conditions (2) and (3). For R 4= 0 the simply separable 

solutions of  (4) which decay for x --> o~ are of  the form @(y) exp (-- kx); assuming such modes, 
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Figure 3. Variation of the length of the recirculating region x r with h. 
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one is led to the generalised eigenvalue problem 

q~yyyy + (2 ) `  2 +R) ` )¢yy  + )2 ()`2+ R)`)4~ = 0, (10.1) 

q~(+ 1) = ~'(+ 1) = O. (10.2) 

Now, although the differential operator in (10.1) is formally self-adjoint, it depends on the 
generalised eigenvalue )`, which appears non-linearly in both coefficients. Thus, one cannot 
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hope to find only purely real eigenvalues. In fact, for R = 0 it is easy to show that all the 
eigenvalues are actually complex. Another serious difficulty is that since the eigenvalue appears 
in the operator, a simple expansion procedure based on orthogonality or biorthogonality is 
ruled out. Nevertheless, the great advantage of the present model is that since the equation has 

coefficients independent of y,  the eigenvalue problem can be reduced to a transcendental 
equation. As the only solutions, for R 4:0 of (10.1) are trigonometric, the eigenvalue problem 

reduces to the solution of 

tan k/k = tan ~/k2 + RX / ~/h2 + R~ (11.1) 

with corresponding eigenfunction 

sin k 
~b(y) = sin(ky) sin(V~-2 +RX "y)  (11.2) 

sin ~/~ 2 

for a symmetric duct expansion, which is the only case to be considered here. The eigenvalue 
problem and the estimation of the flow development will be considered in turn. 

4.1 The eigenvalue problem 

In general (11.1) will admit complex eigenvalues. This is most easily seen by setting R = 0 in 

(4), corresponding to Stokes flow; the eigenvalue problem for modal solutions leads to the 

transcendental equation 

sin2X = 2X (12) 

which is well known to have only complex roots. Since for small R the solutions of (12) should 
be a good first approximation to the solutions o f ( l  1.1), one would expect (11.1) in general to 

have complex roots. 
Before looking at the general properties of the eigenvalues and the method of their com- 

putation, it is helpful to look at some plots of their distribution in the complex X-plane. Figures 
5a and 5b show the distribution of the lowest eigenvalues, ordered by the magnitudes of their 
real part, for Reynolds numbers of 1, 10,100 and 1000. The first thirty eigenvalues forR = 104 

and l0 s are all real and hence are not shown. For R = 1 all the eigenvalues are complex while 
for R = 1000 there are only two complex eigenvalues in the range shown. One observes also 
that the eigenvalues (particularly the real ones) tend to crowd towards the origin as R ~ oo 

Figure 6 shows the locus of a particular eigenvalue, namely the first at R = 0 as R increases 
from zero to 200. We might point out that the left-running real eigenvalues generated by the 
coalescence of complex conjugate pairs is not shown in this figure. Note particularly that the 
eigenvalue is purely real over finite ranges of the Reynolds number, e.g. between 8.55 and 10.3 
and that the imaginary part keeps getting smaller. 

We now list some analytic properties of the eigenvalues which are useful in determining 
them. (a) If X is an eigenvalue, its conjugate is an eigenvalue. Since we are interested only in 
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bounded solutions, i.e. those with Xr > 0, this restricts the search to the upper right half-plane 
alone. (b) Since X(= kr + iki) is in general complex, it would be useful to have a bound on Xi- 
Multiplying (10.1) by the conjugate o f  ~ and integrating over the interval one finds 

f ldp" iZdy--(2X 2 + RX) i I~ ' i2  dy+X2(X 2 + R~k) ~ l ¢[2dy = O. 

If one now takes the imaginary part of  the equation and assumes X i > 0 it is easy to conclude 

that 

(4X r + 3R ) 1/2 
~k i ~ ~krt-'~r- ~ ] ( 1 3 )  

This is a useful bound because it restricts the search for complex eigenvalues essentially to a 
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Figure 6. The locus of the first eigenvalue for R = 0 as R increases. Note that for ranges of values of R, e.g. 
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wedge in the upper fight half-plane. (c) Since the roots of (12) approximate those of (11.1) for 
R ~ 0 and since (12) is known to have only complex roots with h i ~ Xr as IXI-+ o% it is natural 

to seek asymptotic solutions to (11.1) with kr ~ (4n + 1)7r/4, hi "~ Xr, R ,~ Xr for large integer 
n. Substituting these forms into (11.1) one finds the asymptotic solutions 

4 - ( - - I n  {(4n--+- 1) rr}l X r ~ ( 4 n +  1) R + 
4 (4n+  1)rr ] '  

(13.1) 

X i ~ ½ In {(4n + 1)n }. (13.2) 

This expansion for fixed R, ~k r ~ o o  leads to two conclusions. No matter how large R is, there 
will exist complex roots i.e. one cannot hope for a purely real spectrum even for large R. 
Secondly, consistent with the bound given by (13), (13.2) shows that the eigenvalues cannot be 

boxed in a strip of finite width in the plane. We note that (13.1) also indicates that for suf- 
ficiently large n the eigenvalues of this sequence should be spaced approximately zr apart. This 
trend is evident in Figure 5a for the lower Reynolds numbers. (d) ForR ~ ~,  Figures 5a and 6 
suggest the existence of roots of O(1), and the figures further suggest that these lie in the 
neighbourhood of nrr. This assumption leads to the asymptotic formulae for R ~ o% 

;~ ~ nz" (1 + e +  . . . .  ), (14.1) 



335 

2(tan A -- a / 2 )  (14.2) 
er A (A tan A + 1) ' 

z 2{(1 + er) tanA --Aer} 
6 i = A(A tanA + 1) ' 

(14.3) 

where A = (nTrR) 1/2 (1 + er/2) and nzt ~ R .  This formula is unfortunately not explicit, but it 
would still be easier to compute an initial approximation for )` from the above rather than (11.1) 
as e is small. (e) Finally the limit analysis for R ~ oo of Section 3 suggests the likelihood of 

roots X ~ O (I/R) as R --> oo. This assumption leads to the asymptotic formula for R ~ oo, 

~2 ~a (1 _sec2  ~ + ]~a)  (15) 
X~ ~ +R-- 2 ( s e J ~ - - ~ )  ' 

where ~ satisfies tan ~ = ~. Thus as R ~ oo the roots of(11.1) that are closest to the origin, i.e. 

the most important roots, correspond to those of (9), the eigenvalues of the limit equation used 
in Section 3. This already suggests the essential validity of the approximation in Section 3. 

The properties of the eigenvalues listed above give the general impression that the spectrum 
has two distinct branches, a low-Reynolds-number one connected with the approximation (12), 
and a high-Reynolds-number branch related to the approximation (9). While this is partially 
true, careful computation shows that as R increases pairs of real eigenvalues are formed when 

complex conjugate pairs come together on the real axis; the resulting left-running ones then 
migrate to the neighbourhood of the origin provided they do not collide earlier with a right- 

running real eigenvalue. While the real eigenvalues near the origin dominate the flow for high 
Reynolds numbers, complex eigenvalues will always be present. 

With this picture in hand, the location and accurate computation of the eigenvalues is not 
too hard. For a given R one hunts along the real axis for the real roots from the second branch 
whose location will be approximately given by (15). The (generally) complex roots from the 
first branch are found either by starting from the roots of (12) or from formula (13) and tracking 
them using Newton's method. Generally for any computation the first 30 eigenvalues, ordered 

by their real parts, were located. 
It is possible at times to inadvertently miss roots, particularly complex ones with small 

imaginary parts. In order to guarantee that no roots have been missed in a given region of the 
),-plane, it is most useful to apply the principle of the argument (see Dettman [7] for example). 

Some missing roots were actually located by the use of this theorem. Tables la and lb list the 
first 25 roots of (11.1) for Reynolds numbers l0 n, n = 0, 1, 2, 3, 4. For R = l0 s to this ac- 

curacy, the roots are given by multiplying those for R = 104 by 0.1. 

4.2 The solution of  the duct-expansion problem 

The difficulty in using the eigenfunctions {~bn (y,)`n), n = 1,2 . . . .  } generated in Section 4.1 to 
solve the duct-expansion problem stems from the fact that there is no clear-cut expansion 
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Table la. The first 25 e igenv~uesforR = 1 ,10 ,100 .  

R = I  R = 1 0  R = 1 0 0  

1 3.51591 + 1.36026 
2 3.51591 -- 1.36026 
3 6.70989 + 1.65432 
4 6.70989 -- 1.65432i 
5 9.87624 + 1.83717i 
6 9.87624 -- 1.83717i 
7 13.0327 + 1.97057i  
8 13.0327 -- 1.97057i 
9 16.1843 + 2.07571i  

10 16.1843 -- 2.07571 
11 19.3331 + 2.16252i  
12 19.3331 -- 2.16252i  
13 22.4802 + 2.23646 i 
14 22.4802 -- 2.23646 i 
15 25.6262 + 2.30087i  
16 25.6262 -- 2.30087 i 
17 28.7713 + 2.35791i  
18 28.7713 -- 2.35791i  
19 31.9159 + 2.40911i  
20 31.9159 -- 2.40911 i 
21 35.0600 + 2.45555 i 
22 35.0600 -- 2.45555 i 
23 38.2037 + 2.49804 i 
24 38.2037 -- 2.49804 i 
25 41.34714 + 2.55721i  

1.99794 
3.36027 
3.85030 
6.60710 + 0.83661 i 
6.60710 -- 0 .83661i  
9.65423 + 1.08771i 
9.65423 -- 1.08771i 

12.73150 + 1.24160i 
12.73150 -- 1.24160i 
15.8269 + 1.35264 i 
15.8269 -- 1.35264 i 
18.9339 + 1.43978i 
18.9339 -- 1.43978i 
22.0488 + 1.51173 i 
22.0488 -- 1.51173i 
25.1690 + 1.57318i 
25.1690 -- 1.57318i 
28.2933 + 1.62696i 
28.2933 -- 1.62696i 
31.4205 + 1.67485i 
31.4205 -- 1.67485 i 
34.5499 + 1.71808 i 
34.5499 -- 1.71808i 
37.6812 + 1.75753i 
37.6812 -- 1.75753i 

0.20177 
0.59567 
1.18534 
1.97645 
3.03480 + 0.22180i  
3.03480 --  0 .22180i  
3.93836 
5.34325 
6.44093 + 0.29199i  
6.44093 -- 0.29199 i 
8.29704 
9.61622 + 0.35087i  
9.61622 -- 0.35087 i 
11.9325 
12.4981 
13.3867 
15.6381 + 0.56660i  
15.6381 -- 0.56660i  
17.7812 
19.1060 
19.3608 
21.9972 + 0.66624 i 
21.9972 -- 0.66624 i 
24.7759 + 0.41873 i 
24.7759 -- 0.41873 i 

Table lb.  The fks t25  e ~ e n v a ~ e s f o r R  = 1000,10,000. 

R = 1000 R = 10,000 

1 0.0201906 0.00201907 
2. 0.0596781 0.00596795 
3 0.1188939 0.0118900 
4 0.1978448 0.0197858 
5 0.2965255 0.0296554 
6 0.4149337 0.0414989 
7 0.5530670 0.0553164 
8 0.7109220 0.0711077 
9 0.8884983 0.0888729 
I0 1.0858003 0.1086119 
II 1,3028426 0.1303249 
12 1.5396589 0.1540117 
13 1.7963325 0.1796724 
14 2.0730625 0.207307 
15 2.3704247 0.2369153 
16 2.6908248 0.2684976 
17 3.0903088 + 0.0378163i  0.3020536 
18 3.0903088--0.0378163 i 0.3375834 
19 3.3332871 0.3750871 
20 3.7278171 0.4145646 
21 4.1251951 0.4560157 
22 4.5400317 0.4994406 
23 4.9744095 0.5448394 
24 5.4304710 0.5922118 
25 5.9198748 0.6415581 
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theorem to indicate how they are to be used to represent a given initial-velocity distribution at 

x = 0. It is easily verified that they are not an orthogonal set at least to any known weight; 
moreover, it is to be noted that two conditions have to be satisfied at x = 0, e.g. ~ ( 0 , y )  and 
• ,, (0, y) might be prescribed. 

It is worthwhile at this stage to compare this situation with that which occurred in the high- 
Reynolds-number approximation of Section 3. In that case if modal solutions of the form ~ y )  

x exp ( -- Xx) were sought for the governing equation (5), the eigenfunctions had to satisfy 

d4~ -[- R )k d2~ 
dy--- Z dy--- i = 0 (16) 

subject to the no-slip condition at the side walls. Now, although (16) is not a standard eigen- 
value problem for ),, it is of the form 

L~ = XM~, (17) 

where L and M are differential operators. If we define the usual inner product 

= I I1~2(y)~  1 (y)dy (18) (b=,~l ) 

on the manifold of twice differentiable complex-valued functions on [ -  1, 1] which vanish 
together with their first derivatives at the end points, L and M are self-adjoint, and M is positive 

definite. Thus, if (~1, hi ) and (~2, X2) are two eigenfunction/eigenvalue pairs of (17), we have 

X1 <~)2,M~91) = <¢92,L~)1) = (L~2,~1) = X2 <M~2,~I ) = -X2 (~2,M~a ). (19) 

Now setting q~l = ~2, the positive definiteness of M implies that X1 is real while ifq~ 4:q~2 (19) 

implies that (q~2, M~I ) = 0. Thus, the eigenvalues are real and a pseudo-orthogonality condition 
exists which will permit easy evaluation of the coefficients in an eigenfunction expansion. Note 

too that in this case only one boundary condition at x = 0 has to be prescribed. Thus the 
eigenfunction expansion given explicitly by (8.1) and (8.2) is easy to obtain. 

In view of the fact that for the full problem the expansion procedure is not obvious, we 
have chosen to try three procedures to expand a given initial-velocity field at x = 0. Let us 

assume that the eigenfunctions defined by (10) form a complete set and let us assume that 
u * = u (0, y) and v* = v(0, y), the velocity components at x = 0, are prescribed. 

(i) Let Uo(y) be the two-component vector, whose components are u*(y) and v*(y), 
the velocity components at x = 0, 

= / u * ( Y ) t  (20) Uo (y) ~ v*(y) ]" 

Now each eigenfunction ~,~ (y, hn) of (10) leads to a velocity field with components (Un(.y) 
x e -xnx, vn(y)e-Xnx). 
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Let 

u. <y)l 
Vn(x 'Y )  = Vn ( y ) ]  e . (21) 

The veloci ty field over the whole duct  is then given by 

U(x, y )  = t an Vn (x, y )  (22) 
r l = l  

which then has to yield the prescribed initial veloci ty  at x = 0, 

Uo (y)  = ~., an Vn (0, y).  (23) 
n = l  

The first me thod  used is to take a finite number  o f  terms N on the right side o f  (23) and choose 

the coeff icients  such that  

N 

I I Uo (y)  -- ~ an Vn (0, y )  il (24) 
n = l  

is a min imum.  This amounts  to being a least-error-squared fit  over the initial data. The pro- 

cedure natural ly leads to a system o f  N linear algebraic equat ions  for the coeff icients  {an, n = 

1, 2 . . . N } .  If  the eigenfunct ions are complete , ,  one would  expec t  the a n to tend to their  

l imiting (correct)  values, as N - +  oo. Table 2 shows the typical  convergence behaviour  o f  the a n 
as N increases. 

Table 2. The coefficients a n (n = 1, 2 . . . . .  10) of the eigenfunction expansion for R = 1, h = 0.5, para- 
bolic entry profile, as computed using (24) with N = 10, 16, 22. 

N = 10 N = 16 N = 22 

al -4 .37343 + 1.25242 
a 2 - 4 . 3 7 3 4 3 -  1.25242i 
as -2 .5297  + 1.40461i 
a, - 2 .5297  - 1.40461i 
as 1.28629 + 0.31311i 
a m 1 . 2 8 6 2 9 -  0.31311i 
a7 1.41788 -- 0.65956i 
a 8 1.41788 + 0.65956 i 
a 9 0.23783 -- 0.30098i 
a~o 0.23783 + 0.30098i 

-4 .436458 + 1.25025i -4 .3685  + 1.254i 
-4 .43645 - 1.25025i -4 .3685  - 1.254i 
-2 .53914  + 1.401i -2 .5376  + 1.39676i 
-2 .53914  - 1.401i -2 .5376  - 1.39676i 

1.3375 + 0.34886i 1.3331 + 0.35229i 
1.3375 - 0.34886i 1.3331 - 0.35229i 
1.47502 - 0.85422i 1.4622 - 0.85157i 
1.47502 + 0.85422i 1.4622 + 0.85157i 

-0 .88791 - 0.3951i - 0 . 8 5 1 6 9 -  0.40065i 
-0 .88791 + 0.3951i -0 .85169  + 0.40065i 

(ii) The second m e t h o d  is based on the Schmidt  or thonormal isa t ion  procedure  used in 

Hilbert-space theory  (Fr iedman [8]) .  We wish to use the vectors {V n ( 0 , y ) ,  n = 1 , 2 . . .  } given 

by (21)  as a basis for the space o f  two-componen t  vectors whose componen t s  are complex-  

valued funct ions on [-- 1, 1 ] .  Define the inner  product  on this space by 

1 

(U, ~I }} = f_l(U-i w I + u-2 w2)dy, (25) 

where U(y)  = (ul (Y)I u2 (y))  and W(y)  = (wl  (y),  w2 (y)) .  With respect to this inner product  
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the Vn given by (21) are not an orthonormal set. We now generate from the set { Vn (x, y),  n = 
1, 2 . . .  } a set { fen (x, y) ,  n = 1, 2 . . . .  } which is orthonormal at x = 0 by the Schmidt-ortho- 

gonalisation procedure, as given for example in Friedman [8]. Since the fe n are linear com- 

binations of  the Vn they also satisfy the governing equations. If  we then write 

U ( x , y )  = Y a h  (in ( x , y ) ,  (26) 
n = l  

the coefficients ti n are now simply given by 

an = (Uo (y),  I,~n (0, y )  ). (27) 

Thus, there is no need to solve even a system of  equations once the orthonormal set of  eigen- 

functions is generated. 

(iii) The third procedure depends on converting the non-standard eigenvalue problem (10) to 

a standard one by considering a system of  equations. Defining r and r / to  be the strain rates given 

by r = Ux and r / =  Vx and assuming modal solutions of  the type u(x ,  y )  = a(y )  exp ( -  Lv) etc., 
the governing equations can be written as 

LI~ = M I ~ ,  (28) 

where l~is a 5-component vector 

l~(y) = ( ~ ( y ) , O ( y ) , p ( y ) , ¢ ( y ) , ~ ( y ) )  (29) 

and L is a differential operator, and M is a constant matrix both of which are independent of  X, 

L = 

d 2 
0 0 R 0 dy 2 

d 2 d 
0 0 R 

dy ~ dy 

d 
0 - -  0 0 0 

dy 

0 0 0 1 0 

0 0 0 0 1 

0 

0 

M =  

0 1 - 1  0 

0 0 0 - 1  

1 0 0 0 0 

- 1  0 0 0 0 

0 - 1  0 0 0 

(30) 
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Since (28) is now in standard form one can use the eigenfunctions of  the adjoint L * of  L to 

expand a given 5-vector We (Y) using a biorthogonality relation. However, since only u, v and r 

are known at x = 0, this procedure leads to an infinite system of  algebraic equations for the 

coefficients ~n in an expansion of  the form 

I~(x, y )  = £ an Wn (Y) e - x n x. (31) 
n = l  

This procedure is similar to the procedure used by Johnson and Little [9] to solve a problem in 

elastostatics. 
The three procedures described above should' serve to emphasise the unusual nature of  the 

eigenfunction expansion. A single set of  coefficients an in an expansion of  the form ~ = 

~,and~n(y ) e - x n x  has to be determined by two conditions at x = 0. It is now clear that this 

rules out any direct orthogonality relation between the ~n as then a single condition at x = 0 

would determine the an. In contrast, the Appendix considers a related problem where direct 

orthogonality is possible. 

Table 3. Comparison of the coefficients a n of the eigenfunction expansion as obtained by the three 
methods (I) least-error-squared fit, (II) orthonormalisation and (III) reduction to standard form; h = 0.5, 
R = 1000. 

Least error Orthonormalisation Reduction to 
squared fit standard form 

0.2647 0.26412 0.26362 
--0.03034 --0.030407 --0.03049 
--0.01502 --0.015061 --0.015104 

0.005611 0.005526 0.005522 
0.003735 0.003684 0.003686 

- -  0.001914 --0.001913 --0.001918 
--0.001446 --0.001464 --0.001467 

0.000967 0.000918 0.000921 
0.0008 0.000773 0.000777 

--0.000557 --0.000551 --0.000551 

We have generally found that the three methods lead to almost the same answers, and there- 

fore it appears that the expansion procedure is valid. Table 3 compares the coefficients given by 

the three methods for a typical case. Figure 7 shows the effectiveness of  the eigenfunctions in 

representing a given initial parabolic profile over 0 ~<y ~< 0.5. The representation would nat- 

uraUy be better if there were no discontinuity in the initial slope. 

4.3 Results and discussion 

All the calculations to be presented are for a symmetric sudden expansion with h = 0.5 and for 

a symmetric parabolic entry profile with zero v-velocity. The calculations utilised more than 20 

terms in the eigenfunction-expansion procedure. It was found, generally, that the accuracy on 

the initial-velocity field representation increased with R;  as for large R,  more of  the eigenvalues 
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The shape of  the separating streamline (,I, = 1) for various values of the Reynolds number. 

were real. In all cases, however, the order of the error was no worse than 0.01 on either Uo (y) 

or v0 (y). 

Figure 8 shows the shape of the separating streamline, q~ = 1, for various values of the Rey- 

nolds number. Also shown in this figure is the separating streamline as given by the large R ap- 

proximation of Section 3. It is clear that asR ~ oo the present solutions go smoothly to the large 

R solution. In fact the calculations for R = 10 000 and R = 100 000 are so close to the latter 

that they would be indistinguishable on the scale of Figure 8 and hence have not been shown. 

It was pointed out in Section 3 that at high Reynolds numbers the qLvalues were so close to 

unity in the separated flow region that, to the accuracy of the present computations, they could 

not be distinguished from unity. The situation is not so at lower Reynolds numbers. Figure 9 

shows details of the recirculating region for R = 1. The qL values depart sufficiently from 1 to 

be computable to the accuracy of the present calculations. 
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Figures 10 and 11 show the variation of the centreline axial velocity and centreline pressure 
gradient as functions of Reynolds number. It will be noted that at the lower Reynolds numbers, 

namely at R values of 1 and 10, the behaviour is quite different than that at the higher values, i.e. 

if x is scaled by R the approach to the Poiseuine flow is slower at the lower Reynolds numbers. 
One observes also that the pressure gradient near the entrance changes from large negative 

values to almost zero as the Reynolds number increases. Moreover, the pressure gradient is 

always negative for all x/R; this contrasts with Kumar and Yajnik, who found large positive 
values for ap/ax near the duct entrance. 

It is easy to establish from the x-momentum equation and the boundary conditions that at 

the side wails ap/ax = R -  1 uyy; thus if there is reverse flow at the walls ap/~x has to be positive 

at the side walls. In the present case the velocities in the recirculating region are so small that 

the wall pressure gradient is extremely small, even if positive (note, of course, that Figure 11 

shows the centreline pressure gradient and not the wall pressure gradient). 

The length of the recirculating region, Xr, is shown in Figure 12 as a function o fR .  Clearly as 

R ~ o% xr/R approaches the value given by the large R approximation; for small Reynolds num- 

bers, however, the dependence on R is significantly different. In fact, for large Reynolds 

numbers xr/R ~-- 0.017 while for R = 1, xr/R ~ 0.35. Note also that this figure indicates that at 

least for the Oseen approximation, 46.6 (the Reynolds number of Hung and Macagno's calcu- 

lation) would not be considered a sufficiently large Reynolds number for the high-Reynolds- 
number approximation to hold. 

The validity of the high-Reynolds-number approximation is given considerable support by 
the results indicated in Figures 8 - I  2. The hypotheses under which the approximation is derived 

appear to hold, and equally significant, the results of the full calculation merge smoothly into 
the results of Section 3 as R ~ oo. In fact, if one examines the coefficients of the full eigen- 
function expansion for R = 104 and l0 s , it is found that these are virtually indistinguishable 

from the coefficients found in Section 3; since as R ~ oo the eigenfunctions of Section 4 tend 
to those of Section 3, this constitutes a powerful vindication of the high-Reynolds-number 
approximation. 
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It is clear that the analysis can handle any given inlet velocity field. Figure 13 shows the 

streamline patterns for a case where the initial v-component is non-zero. We have in this section 
only considered symmetrical inlet flow fields. The methods used here easily extend to the 
general asymmetric case (cf. Figure 4), but then the antisymmetric eigenfunctions would also 
have to be considered. The corresponding eigenvalues satisfy the equation 

)ttan~, = ~ + ) t  2 t a n ~ + ) t  2. 

5. Conclusion 

We have so far considered the flow field downstream ot :~. sudden expansion in a duct. It is, 

interesting to compare this flow with the two-dimensional flow downstream of a baffle with an 
infinite number of holes of width 2a, whose adjacent centrelines are 2 units apart (Figure 14). 

yt 

Figure 14. Two-dimensional flow past a baffle. 

If one is given the u- and v- components of velocity at the plate, the model equations of Section 

2 can be used to analyse the flow. One finds, as shown in the Appendix, that surprisingly the 
eigenvalues for this case are all real and the y-eigenfunctions are simply sin (nTry). The eigen- 
values form two distinct sequences/n 7r} and {(-- R + ~ + 4n 27r 2)/2 } and the coefficients in 
the eigenfunction expansion can be written down explicitly. The recirculating region again 
scales as R for large R. It is remarkable comparing the duct problem with the baffle problem 
that just the change of the side-wall conditions to periodic conditions iny  leads to such differ- 
ences in the analysis; real eigenvalues, explicit expansion procedure, etc. Though the operator is 
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the same, it acts on a different manifold of functions; this makes all the difference. For the duct 
problem it appears that the appropriate solution space is a Hilbert space whose elements are 

two-component vectors, each component being a function on [--1, 1 ]. 
In conclusion we should like to state again the main features of the present work. It has 

been possible to solve a separated-flow problem using model equations over the whole range of 

Reynolds numbers. The analysis has led to an interesting study of a non-standard eigenvalue 
problem involving complex eigenvalues. And perhaps more significantly the analysis has shed 
some light on the limit equation used by Kumar and Yajnik, and the present results certainly 
support the essential validity of their ideas. 

Finally it might be appropriate to indicate extensions to the present work that might be 
useful. From a fluid-mechanical point of view there would be real interest in considering the 
through-flow problem i.e. the flow in an infinitely long duct with a sudden expansion or flow 
through a baffle given the far-upstream velocity field. This would be a difficult problem, since 
the upstream scales are significantly different from the downstream scales, and an eigenfunction 
expansion procedure would require a difficult matching at x = 0. From a mathematical point of 
view it would be interesting to study the non-standard eigenvalue problem defined by (10); 
theorems on the eigenvalues, on expansion procedures and on completeness would be most use- 
ful. Work on a related, but simpler, problem in the theory of elasticity has been done recently 
by Gregory [10]. 

We would like to acknowledge the benefits of valuable discussions with our colleagues 
Dr. U.N. Sinha and Dr. A. Kumar. We are also grateful to Dr. A. Kumar for bringing to our 

notice the problem discussed in the Appendix. 

Appendix 

Consider the y-periodic flow field downstream of the baffle shown in Figure 14. Let • = y  + 

~O (x, y) and assume that the model equation (4) holds. The lateral boundary conditions are now 

~0(x,- + 1) = f fyy(x , -  + 1) = 0. 

Assume that uo (y) and vo (y) are given on -- 1 ~<y ~< 1 that they are symmetric and antisym- 
metric about y = 0 respectively and that f~ uo (r/)dr~ = 1. If we further assume that ~ ( x , y )  = 

sin (nTry) exp ( -  Xx), the lateral boundary conditions are automatically satisfied and the 
governing equation forces ~ to be given by 

{ + n / r  

= n = 1 ,2 ,3  . . . . .  
- -R +~/R 2 +4nZz  "2 

2 

Now, if the eigenfunction expansion is taken in the form 

qj = ~ { a , e - n n x  + bn e - ~- n ÷ x / n '  +4n~Ir~) x/2 ,} sin (nrry), 
1,1= 1 



the coefficients are easily found  to be given by 

2 f ~  [{Uo (y)  - 1} cos (nrry)+ Vo (y) sin(nny)] dy 
bn = [ n T r _ ½ ( _ R  +{R 2 +4n2r r2  }1/2)  ] , 

a ,  = - -  { U o ( . v ) - - l } c o s ( n r r y ) d y - - b n .  
nft  o 
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